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BODIES OF REVOLUTION HAVING MINIMUM DRAG AT HIGH SUPERSOIYtC

By A. J. EGGERS,JE., MHIIR M. RESNIKOFF,and DAVIDH. DmNIS

SUMMARY

Approxiti shapes of dijting
premure foredrag at high supersonic

boditx hating minimum
air8ped.s are cdwh!ed.

‘With ilk-aid oj Newton’8 luw oj res-istmce, the invedi@4m is
Carri-dOuifor variOu8CO?nbinution$Oj the conditiOm3of given
body len@h, base diameter, swjaa area, and volume. In gen-
ewl, II is jownd that when body length h jikd, the body b a
blunt nose; whenxw, when tlw len@h is notw, the body luMa
8hU?’p71.08e. % lldiit’kd eJ@t Oj CILTWIJhLTeOj theJ?OWOVeT
the surjase i8 inw8t~& to determim i% injluence on the
8hape8jor minimum drag. The efleet is to increase the blunt-
W8 oj tlu shup~ in h region of the nose and the ixhature in
the region dowmitreamoj h no8e. These shupe modifications
have, according to
dr~.

CakwMOnj only a 81i9hil%uienq to reduce

Severalbodiesoj revold.on of$nen—mra$w8$ and 6, includ-
i~ tk cakulded 8hap@ of minimum dragjor give-n.kngi%and
bme diameterandfor given basedhneter and surjace aTea,were
tested ai Mach number8from fi.73 to 6.98. A compamkm oj
theoreticaland experim.enidjoredTag eo@iients indti thut
t-k uzkuhkd m-inimumdTq bodies are remonable appoz@z-
tiOl-18to the correci 8hlZp8S.It b veriji.ed,jor tzampl-e,that tlw
bodyjor a given lenqth and bme dimnd.erhm m much as 90
perCe?lt(?WfOrGdTaQtin a COWOjthe 8aW$TlHkX8 TatiO.

INTRODUCI’ION

The shapes of nordifting bodies of revolution having mini-
mum pressure drag at supersonic speeda have been the subject
of numerous theoretical investigations. K4rm6n (ref. 1)
determined the shape of such a body (neglecting base drag)
with given length and base diameter. Somewhat later
Haack (ref. 2), Ferrari (ref. 3), Lighthill (ref. 4), and Sears
(ref. 6) calculated body shapes having tiimum pressure
drag for various other given conditions using methods similar
to those first employed by K4rm&n. In all these investiga-
tions the assumption of small perturbation, potential flow
w-as made. It is to be expected, therefore, that the shapes
obtained by these investigators are representative of mini-
mum-drag body shapes of practical iinenesa ratios at low
supersonic Mach numbers.

Perhaps the first calculation of the shape of a body having
minimum drag was made by Newton (ref. 6) using a method
analogous to the present day calculus of variations. Newton
was ccmcemed with determining the body of given length and
base diameter having minimum resistance w-hen moving at
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sutlioiently high speeds to insure that the inertia forces am
large compar~d b- the elastic forces in the immersing fluid.
Thus, as shown by Sanger (ref. 7) and Epstein (ref. 8), the
law of reaistimce adopted by Newton approximates that
(neglecting viscous forces) for hypersonic air flows. Ac-
cording to this law, the local resisting preswre is proportional
to the square of the free-stream veloci~ componnet normal
to the body surface. Legendre (see, e. g., ref. 9) further in-
vestigated Newton’s problem and concluded that if no re-
strictions were imposed on the variation of slope along the
surface, a body having a meridian curve composed of jagged
lines (sharp edgea forward) could be constricted which, with
this law of resistance, would have less drag than Newton’s
body. It may easily be deduced, however, that Newton’s
law of resistance would not be satisfied on the surface of
Legendre’s body since gas would be trapped in a number of
regions along the jagged contour. It may be shown in fact
that when this law of resistance is satisiied at the surfac~
in whioh case the surface angles must lie between O and u/2
radians-then Newton’s body may be considered the mini-
mum preswre drag body for the given conditions.

It has been undertaken in the present report, using New-
ton’s law of resistance and the calculus of variations, to
determine body shapes having *W pressure drag
(neglecting base ‘&ag) at high supersonic speeds for various
combinations of the conditions of given length, base diameter,
surface area, and volume. The effect of curvature of the
flow over the surface is also investigated to determine its
i.nfluenee on the shapes for minimum drag.

Several bodies of revolution, including two of the bodies
determhed from this analysis, were tested at Mach numbers
from 2.73 to 6.28 in the Ames 10- by 14-inch supemonic
wind tunnel. Foredrag data at zero lift obtained from these
tests are compared with the analytic predictions to assess
the accuracy of the theoretical considerations.

SYMBOLS

A’ local cross-sectional area of body
a local speed of sound

c.
4D

drag coefhcient, —
gad

c, pressure coefllcient, ~
.

constant of integration
b pressure foredrag
d maximum body diameter .
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integmmd function

hypersonic similari~ parameter, M. ~

body length

Mach number, ~

distance measured normal to surface of body
exponent in equation defining shapes of experi-

mental test bodies
static pressure
dynamic prwmre
radius of curvature of streamline in plane con-

ttig axis of symmetry (i. e., meridian plane)
of body

body surfaca area
resultant velocity
body volume
coordinates of point on meridian curve of body

(origin of coordinate system coincides with nose
of body, and z axis coincides with &s of
symmehy)

ratio of specific heat at constant pressure to
specidc heat at constant volume

angle (in meridian plane) between free-stream
direction and tangent to body surface

Lagrange multiplier
density

Sumcms

free-stremn conditions
values at nose point of meridian curve
values at base point of ~g curve
right-hand limiting value of quantity at corner on

minimizing curve
left-hxmd limiting value of quantity at corner on

mhimking curve
values along meridian curve
cone values

THEORY

The investigation undertaken here is concerned with the
shapes of nonlifting bodies of revolution having minimum
pressure foredrag at high supersonic airspeeds. Difficulties
inherent in the calculation of these shapes make it desirable
to simplify the drag equation insofar as is practicable, con-
sistent with retaining the salient features of the dependence
of dragon body shape and free-stream conditions. Likewise,
in view of the several conditions to be treated (viz., given
length, base diameter, volume, and surface area), it is
convenient to setup a procedure of analysis to fit the general
problem at hand. These fundamental considerations will
be discussed prior to the determination of specilic minimum-
drag shapes.

FONDAMENTAL CONSIDERATIONS

Simpl.iiled drag theory.-As pointed out in the intro-
duction, Newton’s law of resistance applies approximately
to bodies traveling at high supersonic airspeeds. This
observation has basis in the fact that at such speeds the

inertia forces predominate over the elastic forces in tho
disturbed air. Thus, oblique shock flows approach the
corpuscukmtype flows treated by Newton as the Mach
number of the free strwn becomes large compmed to 1.
Anal@ of such flows can, for our purposes, be simplified
without appreciable loss in accuracy by assuming that y of tho
disturbed fluid approaches 1. In this case the shock+mvo
angle approaches the flow-deflection angle (see sketch) and

C,-- Disturbed flow ,/ Shock WOVS

. reaion ,~\- /-..
Um .

“-Body surface

Sketoh 1

the pressure coefficient at a point just downstream of the
wave is given by the simple expression (ref. 8)

C*=2 sin% (1)

This equation is recognized, of course, as being (asido from
the constant multiplier) a mathematical statement of
Newton’s law of resistance for corpuscular or impact-type.
flow.

When the curvature of the body, and hence of the dis-
turbed flow, is small in the stream direction, equation (1)
should also predict the pressure coefficients at the surface of
a body since, in this we, the centrifugal forces in the thin
layer of air (sometimes referred to as the hypersonic boundary
layer) between the shock and the surface should not appreci-
ably alter the impact pressures. When the curvature of the
body is large in the stream direction, centrifugal forces in
the fluid between the shock and the surface may appreciably
alter the pressures at the surface from those just downstream
of the shock. Busemann (ref. 10) investigated this problom
and found that the pressure coefficient at o point on the
surface of a body curved in the strwm direction is given
by the relation

(cp=2sin6 Sim+g
rcos”+

(2)

in the limit as M+ w and 7+1.
In order to assess the accuracy with which the preceding

equations may be expected to provide the pressure clis-
tributions, and thus pressure drags, on bodies opemting ot
high supersonic airspeeds, the predictions of these equations
are compared in figure 1 with those of the method of chw-
acteristica (obtained from ref. 11 for Y= 1.4) for an ogivo
operating at a value of the hypersonic similarity parameter
K (ratio of free-stream Mach number to slenderness ratio)
equal to 2, corresponding to a free-stream Mach number of
6. It is evident that the theory of Busemann (eq. (2)) yields
far too low pressures downstream of the nose, while Lho
simple impact theory (eq. (l)) is in reasonably good over-all
agreement with the method of characteristics. The rel-
atively poor predictions of the Busamann theory are asso-
ciated with the fact that it strongly overestimatca centrifugal-
force effects at free-stream Mach numbers which are large
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FIQUEE l.—(%mparison of approximate and exact pressure distr-
ibutions over a tangent ogive of iinenew ratio 3 operating at a Mach
number of 6 (K=2).

compared to 1, but for which -Yof the air flow downstmmn
of the bow shock is closer to 1.4 than 1 (i. e., at flow con-
ditions of principal intere9t in this paper). This matter
will be discussed in greater detail later in the paper. Agree-
ment comparable to that just discussed is obtained with
the other results presented in reference 11 for K=2. For
lower values of K the agreement of the impact theory with
the method of characteristic is somewhat poorer, as would
be expected; however, it does not become unacceptably
poor except for values of K below 1 (e. g., the pressure
coefficients War by from O to 35 percent for a K of ~. It
is therefore concluded that for valuea of K greaterthan 1,

equation (1) may be used with acceptable accuracy for the
purposes of this paper to predict the pressure distributions
and thus pressure drags on bodies. For this remon, and
because of its simplicity, it is tvnployed throughout the
subsequent analysis.

If the manner in which the pressure coefficient varies over
the surface is known, it is Q simple matter, of course, to
evaluate the pressure drag of a body. Neglecting the bsae-
drag contribution, we have then

(3)

where y’ denotes the derivative dy/ok. This equation may
be expressed in a form more convenient for use here

D
1.=—=

s
‘c,&dx2WC0 0

If Cp in this expression is replaced by
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(4)

its value given in

(
,2

)equation(1) noting that sin% =~ there is then obtained
l+y” ‘

the relation .

.SIn= ‘~, dx
0l+y’ (5)

It remains now to consider the procedure for employing this
expression in combination with the methods of the varia-
tional calculus in order to determine the desired minimum-
drsg body shapes.

PROCEDURE FOIt CALCULATING MINIMUM-DRAG BODIES

The calculation of minimum-drag body shapes of interest
here is equivalent to det ermining the form of the function
y=y(x) which minimizes the integral defined in equation
(5) for the VW50us given conditions. In considering the
procedure for carrying out this calculation, however, it is
convenient, for reasons that will be apparent later, to write
equation (5) in a form which effectively yields the total
drag as the sum of the drag on any fite region of infiniti
slope at the nose plus the drag on the surface downstream
of the nose- Thus we have

ID=y:+ J%!2y#—s0l+y’
(6)

where the variable limit xg is introduced to permit variations
in body length. The conditions of given volume or given
surface area are tied by the auxiliary requirements that,
respectively,

J:= ‘y%k=Const.0

or (neglecting base area)

g=g+~YJiw%=cmst.
0

(7)

(8)

When the length and base diameter are given, the problam
is simply to minimize the function ID given by equation (6).
However, according to the isoperimetic rule of the calculus
of variations (see, e. g., ref. 12), the probltun of mhin&ing
the function ID, subject to the auxiliary condition given by
equation (7) or (8), is equivalent to minimkhg the new
f&ction J., where

or

depending on whether
The parameter x is a
grange multiplier.

JD=ID-

JD=L-

the volume or surface area is given.
constant, sometimes called the b
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With the aid of equations (6) through (10), the integrand
functions to be minimized can be immediately written.
These functions are as folIows:

case a, given length and base diameter

case b, given volume and length or bwe diameter

ease c, given surface area and length or base diameter

(11)

(12)

(13)

Now any function y=y(z) which minimizes equation (6),
(9), or (10) must, irr=pective of the given conditions, satisfy
the Euler equation (for zero first variation of ID or J~ with
small changes in the function y(z))

(14)

bf af
where fti and Jr denote the partial derivatives — and —1

??/’%
msp ectively. Site the integrand functions given above are
free of the independent variable, the first integral of the
Euler equation for these functions follows immediately,
namely,

y’fg-f =Const. (15)

Substituting, successively, equations (11), (12), and (13) into
this equation there are then obtained the expressions

and

4.@3
(1+y,2)2=const.

4wf3

(l+y’~2–~&=comt”

[
*A 1—— =Const.

y (l+y’2)* ~~

(16)

(17)

(18)

for cases a, b, and c, respectively. Solutions to these differ-
ential equations satisfying the terminal conditions on the
bodies are mhimking curves for the given conditions.

When the end points of a ~g curve are not fixed,
~ther terminal conditions must be imposed on the function
V=-y(z). Thus, to determine the ordinate at the nose, it is
required that (see ref. 13)

(19)

for cases a and b, while

—–(2+q,,=o
&2

(20)

for case c.

FOR AERONAUTICS

Similarly, when the length is not given it is
necessary that

(Y’f/-f)*-*i=o (21)

and when the base diameter is not given it is required that

fu’ J.-Z*= o (22)

In addition to the above deaoribed conditions, two checks
must be made to determine completely the shape of a mini-
mizing curve. The iirst of these cheeks entails ascertaining
whether there are any corners (between the end points) on
the curve. This is accomplished by determiningg whether
the function y=y(z) can satisfy the requirement that (see
ref. 12)

ff+=fv’- (23)

at a point of discontinuity in y’. If this equation is not
satisfied, no corners exist. The second check requires that
the Legendre condition (for a positive second variation),

be satisfied everywhere on the curve. With the aid of these
checks, the minhking curves for various combinations of
the conditions of given length, base diameter, volume, and
surface area can be uniquely defined. The calculation of
these curves for several such combinations is now undertaken.

CUMULATION OF MINIMUM-DRAG BODIBS

Given length and base diameter,-Equations (16) and (19)
give the first integral to Euler’s equation and the terminal
condition at the nose, respectively, for these given condi-
tions. It is evident upon examining these equations that
the minhking curve cannot, in general, pass through both
the points (0,0) and (%,yJ, but must, in fact, have its for-
ward termination point at (o,yJ with Y1’= 1. With this
information, the mhimizhg curve can be represented in
parametric form, namely,

(26)

It is easily shown with the solution to the Euler equation
and equation (23) that there are no corn-” on the minimiz-
ing curve; i thus the variation of y with z is readily deter-
mined with the relations of equation (25) for a given 1 and d
(corresponding to a given% and y,) of a body. These relw
tions for a body of given fineness ratio cm be shown to be
equivalent to those originally developed by Newton (me
ref. 6).

Given length and vohune,-For these given conditions,
the terminal conditions (eqs. (19) and (22)) require the
slopes at the nose and at the base to be, respectively, VI’= 1
and y~=O. The iirst integral to the Euler expression (eq.

~SlmilarlY,it cm beshownthatthareamnocornersbetwoa (O,VI)and (ZI,YY)onm y of tho
~~ to k trfateilhem.



BODIES OF REVOLUTION HAVTNG MINIMUM

(17)) then leads to the following parametric representation
of the minimizin g curve:

(26)

I?rom the relations of equation (26) it is clear, again, that the
minimizing curve cannot pass through (o,o)j the condition
yl’=l determiningg a value y,>O. These relations, togethw
with the volume condition (eq. (7)) and the given length
condition, serve to determine yl and x and thus, of course, the
shape of the entire body. As the length approaches O, x be-
comes infinitely negative; while, as the length becomes in-
finitely large, x approaches O. (In the latter case the body
Bhape approaches the minimum-drag shape for the given
lmgth and diameter condition, Z/d+ ~.) Intermediate nega-
tive values of x correspond to intermediate values of length
for a given volume.

Given length and surface area,-li this caae a fit integral
to the Euler equation is given by equation (18), and the
parametric representation of the mhimking curve may be
written immediately in the form

const. (1+#*)2

}

‘=4#-A(l+y’2)3fl -

z= J‘@r,?/
(27’)

Upon examination of this equation and equations (2o) and
(22), it becomes apparent that, again, the mhbizing curve
cannot go through the point (0,0). The latter equations
determine uniquely, however, the values of y,’ (y{<l) and

Ya’ (o<Y2’<Y1’) in terms of the parameter X. Similarly, the
length and surface-area condition in combination with the
above equations det ermines the value of k. Thus it is easily
shown that the practical range of A is from —2 to O (corre-
sponding to body Iengtha of from zero to infinity for a given
surface area-in the latter me the Newton body is again
obtained).

Given base diameter and volume.-Wlth these given
conditions, the iirst integral to the Euler relation is given by
equation (17), while the terminal conditions at the fore-and-
aft ends of the body are fixed by equations (19) and (21),
respectively. It is evident that the minimkhg curve must,
in general, pass through the origin in order to satisfy all
these equations in addition to the Legendre condition (eq.
(24)). The shape of the minhizhg curve may thus be
defined parametrically as follows:

,3

y=: (1:/’)’

2 y“+ 3?/2
‘=X (1+#)’ }

(28)
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where yl’=O. Combining this expression with equation (7),
there is then obtained for the volume of the body

V== (yi’4+6yi’+45) (29)

The range of x for which these results are applicable is

from zero to 3J5/4y2, corresponding to a volume range horn

idinity to a-.yZ&/5. For a given y, and a given ~a-y2’@5

(corresponding to ~>@2), equation (29) has two solutions

in yz’. One solution yields values of y; greater than @
a result which violates the Le.gen&e condition (see eq.
(24)), while the other yields permissible values less than

8. When y’ and y,’ are known, 1 may then be determined
horn the fit relation of equation (28), namely,

4 Y2’3 (30)
‘=iz (l+y’q’

The determination of y and x follows directly, of course,
from equation (28). The solution given here is not appli-
cable to bodies of extremely small finen- ratios (viz.,

14fiz as can be wisily deduced from equation (28).

Given base diameter and surface area.-lh this case
equations (18), (20), and (21) determine the shape of the
mhimizhg curve as being simply a straight line

(31)

where the parameter x is given by the equation

~=4(W’2/S)3 (32)

Thus, the minimum-drag body for given base diameter and
surface area is a cone.

COMPARISON OF MINIMUM-DRAG BODY SHAPES

The previous calculation of minimum-drag bodies reveals
two general characteristics of their shapes; namely, when
the length is given (fixed) the bodies assume blunt noses,
whereas, when the length is not given (i. e., is free), the bodies
assume sharp noses. The former characteristic may be
traced to the fact that with the length restricted, the net
drag is reduced by accepting higher pressures on a relatively
small area of large slope’ near the nose, thus achieving
lower pressures on a relatively large mea of small slope near
the base. On the other hand, when the length is not re-
stricted it is evident that a sharp rather than a blunt nose
will obtain for minimum drag, since the drag of any blunt-
nosed body can be reduced by simply reldng the require
ment on length, thereby allowing the body to be made sharp
nosed and generally more slender.

In order to permit a quantitative comparison of the
shapes of the calculated minimum-drag bodies, typical
meridian curves for these bodies are shown in figure 2.
For simplicity the bodies are compared on the basis of the
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1.0
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Body axial mminote, .V+

FICWIWJ2.—Minimum drag bodies for varioue given conditions (1/d=5.O
for all badies). -

same fineness ratio-ordinates have been plotted to an
expanded scale to better indicate the relative shapes. The
maximum bluntness is evidently obtainti when the drag is
minimized for a given length and surface area, while the
maximum sharpnesa (a cusp nose) is obtained when the
base diameter and volume are given. It is apparent from
figure 2 that the flat-nosed portions of the meridian curves
for the given length bodies are in all caaes very and. For
example, VI equals 0.0050yz for the body of given length
and volume. On the basis of several calculations it is
indicated, as might be expected, that the degree of bluntness
will increase with decreasing fhmess ratio.

It is also of interest to compaxe minimum-drag body
shapca determined with the aid of the linear theory (see,
e. g., ref. 2) with those found using the impact theory, that is,
bodies especially suited for flight at low and high supersonic
speeds, respectively. Such a comparison is shown in @e 3
for the case of given length and base diameter. It is seen
that qualitatively the shapea are similar although the mini-
mum-drag body for low supersonic speeds is generally the
fatter of the two. Part of this difference in shapes stems
from the fact that the body derived using linear theory was
required to have zero slope at the base. (Also, as will be
shown later, the true minimumdrag shape at high super-
sonic airapeeds may be somewhat fatter than that obtained
using impact theory, due to the fact that centigal forces

My axiol ccmrdinote, x4

FIGURE3.-Comparieon of minimum drag bodies of given length and
base diameter determined by liiear them-y and by impact theory.

are neglected in this theory.) Comparisons of the results of
this piper with those of reGrence 2 f& other given conditions
also indicate qualitative agreement w to general body shapes
despite the marked difference in the laws governing the
surface presmms.

AJl the preceding analysis has been predicated on the
assumption that the flow of air at high supersonic speeds
may, insofar as pressure forces are concerned, be approxi-
mated by a Newtonian type flow. It remains now to test
the accuracy of this assumption and other aspects of the
analysis by experiment.

EXPERIMENT

It has been undertaken to obtain a partial check on tho
findings of the preceding theoretical analysis by determining
experimentally the foredrags on a family of bodies of given
iineness ratios at Mach numbers from 2.73 to 6.28. The
analysis may be expected to apply, at least approximately,
in this range since for the bodies tested the corresponding
values of the hypersonic similarity parameter K wore, for
the most part, greater than 1. A brief description of these
teats is now presented.

APPABATUS AND TESTS

The tests were conducted in the Ames 10- by 14-inoh
supersonic wind tunnel, which is of the continuous-flow non-
return type and operatca with a nominal supply pressure of
6 ahnospheres. The Mach number in the test section may
be varied from approximately 2.7 to 6.3 by changing tlm
relative positions of the symmetrical top and bottom walls
of the wind tunnel. During operation at the higher Mach
numbers, the supply air is heated before it enters the wind
tunnel to prevent condensation of the air. A detailed
description of the wind tunnel and its associated equipment
and of the characteristics of the flow in the test section may
be found in reference 14.

Aerodynamic drag forces were measured with a strain-
gage balance. Tare forces on the sting supports were essen-
tially eliminated by shrouds that extended to within 0,040
inch of the model base. Axial forces on the baaes of the
models were determined from measured base pressures and
h-em free-stream static pressures and were subtracted from
measured total drag forces; thus, the data presented do not
include the forces acting on the bases of the test bodies.

Reynolds numbers based on the maximum diameter of the
test bodies were:

;:lm;$&
Mauh

number million”
273 0.70
3.50 . 9s
‘4 00 .72
5.05 .35
0.28 .16

Reynolds numbers based on model length may be obtained
by multiplying the above values by model flneneas ratio.

MODZIS

Five models of iineness ratio 3 (1/d=3) and three models
of fineness ratio 5 (l/d=@ were tested. With the exception
of an l/d= 3 tangent ogive (this shape was included as being
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typical of those in common usage), all models had meridian
section shapes given by the equation

(33)

where n was given values of 1, %, %, and %. When n= %, the
body shapw defined by the above expression closely approxi-
mate the minimum-drag shapes for given length and base
diameter (eq. (25)) for t/d=3 and 5 (see fig. 4). The accu-
racy of this approximation incmmsea with increasing values
of l/d as can easily be seen upon examination of equation (25).

————

I I t I

Equation (25)

3/4-wer approximation

~(b)
I I I I

o .2 .4 .6 .8 1.0
Body axial amrdinate, X/X2

(a) l/d=3
(b) l/d=5

l?mmm 4.—Comparis0n of protiss of minimum drag bodies of revolu-
tion for given lengths~and base diameters with the approximate
profiles employed in the present tats.

When n=l, the cone is, of course, obtained which is the
minimum-drag body for a given base diameter and surface
mea, Minimum-drag shapes for two diiferent given condi-
tions are thus included among the bodies tested.

Photographs of the eight models tested are shown in
figure 5. The l/d=3 bodies (fig. 5(a)) are, from left to right
in the photograph, the cone, .%power body, ~power (para-
bolic) body, Z-power body, and the tangent ogive which haa
a proiile section radius of curvature of 9.25 body diametars.
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From left to right in fqgu.re s(b) are the l/d=5 cone, Y?ipower
body, and &power body. The base diameter of all models
was 1 inch.

I

I
,

Alid
\

fl=l(mne) f). 3/4 n, 1/2

(o)
,

A-156742 \ :

(a) Fineness ratio 3 bodies
FIGURE6.—Photagmpha of the seven test bodies, the shapes of which

dare @ven by the equation V=5 (z/Z)m,and the l/d= 3 tangent ogive.

_
(b) Fineness ratio 5 bodies

Figure 5.—Concluded.

ACCURACYOF TESTRESUL’H

The accuracy of the foredrag coefficients is affected by
uncertainties in the measurements of the following quantities:
stagnation pressures, free-stream static pressures, base
pre.wures, and the forces on the models as measured by the
tiain-gage balance. Both static and ftewtrewn dynamic
pressures were determined from wind-tunnel calibration
data and stagnation-pressure redings. The latter measure-
ments were accurate to within +% percent, thus static and
dynamic pressures are uncertain by this amount plus possi-
ble calibration errors of +1 percent over the Mach number
range of the twts. The uncertain~ in foredragg due to
inaccuracies in the determination of base presqures does not
exceed + 1 percent. Because of the small drag forces
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measured, the source of greatest error was the strain-gage
balance system. The uncertainty in drag due to zexo shifts,
thermal effects, and friction varied from approximately +2
percent at the lower Mach numbem to +6 percent at the
highest Mach number. The combined effects of all the
sources of error result in probable uncertainties in measured
foredrag coefficients of from +0.001 at the low Mach num-
bers to +0.005 at a Mach number of 6.28. In order to re-
duce this error in the data presented here, particukdy at the
higher Mach numbers, several measurements. were made at
each Mach number and the average values of foredrag
coefficients were employed.

RES~TS AND DISCUSSION

The variations with Mach number of the measured fore-
drag coefficients are shown in figure 6. It is evident that the

Moth numb, Mm

FIcmaE 6.—The variation with Mach number of the foredrag coeffi-
cients at zero lift of the test bodies.

X-POWWbodk do, as predicted, have the minimum foredrags
of all the test bodies with the same finenws ratio, the drag of
the %-power body being as much as 20 percent less than that
of the cone of the same iineness ratio. The general increase
in foredrag at Mach numbers in the neighborhood of 5 and
greater can be traced to an increase in friction drag. This
latter increase is, in turn, caused by the relatively large de-
crewe in Reynolds number with increasing Mach number in
this range (see section on Apparatus and Tests).

A check on the over-all accuracy with which the optimum
ahapes are predicted by the analysis is obtained by com-
paring theoretical and experimental values of the relative
foredrag coefficients of the teat bodies. Such a comparison
is given in figure 7 where the ratios of the foredrag coeffi-
cients of a teat body to the corresponding cmilicients of the
cone of the same fieness ratio are shown as a function of
the exponent n in equation (33) which defines the shapes
of the test bodies. The theoretical predictions of the impact
theory appear to be in good agreement with the experimental
results at the higher values of n (approximately n> O.6).
Thus it is suggested that the %-power body is a reasonable

r

.4”.
Madifled impact thsmry “’

.4 .6 .s
Exponent in equation defining tmly shapes, n

(a) l/d=3 bodies.
(b) l/d=6 bodies.

l?murm 7.—The ratios of foredrag coefficients of test bodies to foroclrag
coefficients of cones as functions of the exponent, n, in tho equation
defining body shapes.

approximation to the correct minimum-foredrag shape of
given iinenm ratio. At the lower values of n, however, it
is indicated that the relative drag is significantly ovoreati-
mated by this theory. This result is not entirely surprising
since the theory neglects centrifugal-force effects in tho
disturbed flow, and these effects must appreciably alter tho
pressures over the highly curved noses of the blunter bodies.

As discussed earlier, the Busemann theory for infinitely
high Mach numbers overestimates these effects at the Mach
numbers of interest here. It has therefore been undertaken
in Appendix A of this paper to obtain a better estimate of
centrifugal forces by accounting approximately for the de-
crease in these forces (at iinite but high Mach numbom)
associated with the increase in the lateral extent of tho
disturbed flow field with increasing distance downstream
from the nose of the body. The predictions of the modifhd
impact theory shown in figure 7 were obtained with the aid
of this estimated centrifugal-force effect (see eq. (A9)) in
combination with equations (1) and (3). It is indicated
that this theory is markedly superior to the impact theory
at the lower values of n, corresponding to the blunter bodios,
over the test Mach number range. The eatimato of tho
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cmtrifugal forces would thus appear to be in fair agreement
with the actual magnitude of these forces.

It is also indicated in figure 7 that with increasing test
Mach numbem, and hence increasing values of .& the
accuracy of the modified theory improves. (Note, especially,
tho trend of the data for the n=% nose shape in fig. 7(a).)
This result suggests that improved approximations to the
correct minimum-foredrag shapes for values of K appr~
ciably greater than 1 may be obtained by using this theory
rather than the simple impact theory. Accordingly, calcu-
lations of minimum-drag shapes have been made using the
modified impact theory in the manner discumed in Appendix
B. The body shapes obtained (see Appendix B) are for
tho same given geometric conditions as those previously
determined using impact theory. The resulting shape for
given length and diameter is shown in figure 8. Newton’s

.Sody axiol wordinate, X/X2

lkxrm 8,—The effect of centrifugal forces on the shape of the minimum
drag body of given length and base diameter (l/d= 6.18).

body of the same fineness ratio is also shown for comparison.
The body shape determined by the modiiied theory is some-
what more blunt in the region of the nose and has more
curvature in the region downstream of the nose than New-
ton’s body. A similar comparison is shown in figure 9 for
the bodies of given base diameter and surface area. In this
case both bodies have pointed noses because the length is
not fixed, but, in the same manner as for the bodies of given
fineness ratio, the shape calculated with the modified theory

Sody oxiol omclinote, titi

lkxJaE 9.—The effect of centrifugal forces on the shape of the minimum

drag body of given diameter and surface area (d=2, s=31.57).
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has more curvature in the region aft of the nose than does
the body calculated with the impact theory. This res~t is
not surprising in view of the pressure relieving effect of
centrifugal forces.

Calculation of the drag of these bodies indicates that those
obtained using Newtonian theory will as expected have the
higher drag at hypersonic speeds, although not by more than
a few percent. This result suggests that consideration of
centrifugal forces will, in the practical case, principally
influence the shape and not the drag of minimum drag bodies.

CONCLUDING REMARKS

It has been undertaken in this report to determine approxi-
mately the shapes of several bodies having minimum pressme
foredrag at high supersonic airspeeds. with the aid of
Newton’s law of resistanm and the calculus of variations, an
investigation was carried out for various combinations of the
conditions of given body length, base diameter, surface area,
and volume. In general, it was found that when the length
is fixed, the body has a blunt nose (i. e., a finite area of
iniinite slope at the nose) as in the classical problem con-
sidered by Newton; whereas when the length is not iixed the
body has a sharp nose.

Several bodies of revolution of iinenem ratios 3 and 5,
including the calculated minimum-drag bodies for given
length and base. diameter and for given base diameter and
surface area, were tested at Mach numbers from 2.73 to
6.28 in the Ames 10-by 14--inch supersonic wind tunnel. A
comparison of the relative theoretical and experimental fore-
drag codicients indicated that the calculated minimum-drag
bodies were reasonable approximations to the correct shapes.
It was verified, for example, that the minimum-drag body
for a given length and base diameter has as much as 20 per-
cent less fored-rag thap a cone of the same fineness ratio.
The cone is, however, the calculated minimum-drag body
for a given base diameter and surface area.

The comparison between theory and experiment also
indicated that the centrifugal forces in the flow about bodies
curved in the stream direction may influence their drag.
The relative extent of this influence was found to be pre-
dictable, particularly at the higher Mach numbers, with a
simple motivation to the impact theory of Newton. It
was therefore suggested that improved approximations to
minimum foredrag shapes at high supemonic airspeeds (for
which the hypemonic similarity parameter has a value
appreciably greater than 1) may be calculated with the aid
of the motied impact theory. Such a calculation was
carried out for bodies with the same given conditions as
those calculated with the Newtonism theory. In general,
the resulting shapes were found to be somewhat blunter in
the region of the nose, to have more c-h%ature in the region
downstream of the nose, and to have slightly lower drag than
the corresponding shapes obtained using the simple impact
theory.

Amm AERONAUTICALLABORATORY
NATIONAL ADVISORY Commrr m FOR AERONAUTICS

MOFFETT I?IDLD, CALm., Dec. 14,1965
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APPENDIX A

ESTIMATED EFFECT OF CENTRIFUGAL FORCES ON SURFACE PRESSURE COEFFICIENTS

An estimate of the effect of centrifugal forces on the pres-
sures at the surface of a body operating at high but finite
Mach numbers may be obtained by comparing the disturb-
ance flow fields at these Mach numbers with that associated
with infinitely large Mach number.

At high Mach numbers the disturbed air flows in a rela-
tively thin region (sometimes termed the hypersonic bound-
ary layer) between the bow shock wave and the surface of the
body (see sketch).

.& ...- wave

1 x

Sketah 2

The change in pressure from the surface to the shock due to
centrifugal forcm in the fluid is given by the equation

assuming the directions of the normals to the stmarnEne9
between the surface and the shock do not diiler appreciably
from the direction of the normal to the surface. This expres-
sion is more conveniently written in the form

Jglr
Ap==

Ro
pu dN (Al)

where ~ and ~ are mean vahws- of the veloci~ and radius,
respectively, in the interval iV. Now the mass m of air be-
tween the surface and the shock flowing (ii unit time) by a
point on the body is given by the relation

Combining equations (Al) and (A2) there is then obtained
for the pressure change

or in coeiiicient form

(A3)

Now in the hit as the Mach number approaches infinity and
-Y of the disturbed fluid approaches 1, the tbiclmesa of the
layer becomes infinitesimal and hence

E=RB (A4)

Similarly, it is easily shown (e. g., with the compatibility
equations applying ilong characteristic I.ines in dally sym-
metric supersonic flow) that

dU=o

along any streamline downstream of the bow shock, and
thus that

(As)

Hence, in this limiting case, equation (A3) takes on a form
equivalent to that” tit deduced by Busemann (see second
term on right of eq. (2)), and later derived in reference 16,
namely,

(A6)

w-here
(1ALain 8—R= dg

On the other hand when the Mach number is finite, but
high, and Y of the disturbed ~uid k_doser to 1.4 than 1,
the preceding evaluations of R and U are in considerable
error since the hypersonic boundary layer, although thin,
is no longer of infinitesimal thickness. This change in the
boundary layer results from the fact that the bow shock
is detached (except perhaps at the nose) from the surface
of the body, the lateral distance from the surface to tho
shock increasing with increasing distance dow@ream from
the nose (see sketih). Thus, for example, R would be
expected to approach R= only near the nose, while with
increasing distance downstream of the nose it would be
expected to become larger than RD. From the pressure
distributions presented in reference 11 it is indicated, in
fact, -th~t for =1 (the range of K’s of interest in this
paper) R>>RB new the maximum ordinate of the body.
(This indication follows from the mnall values of the pressure
coefficients near the maximum ordinate.) It is suggested,
therefore, that at the high supersonic’ speeds under consider-
ation, an approximation to % is given by the relation

721
z=— ~_Y

(A7)

111

Similarly, in the case of ~ it no longer follows that the
magnitude” of the velocity must be constant along streaml-
ines downstream of the bow shock since pressure disturb-
ances can now be tm.nsmitted across strewnlines. Thus (L
better first approximation to ~ than that given by equotion
(A6) maybe obtained from the simple corpuscular or impact
theory, namely,

V=u. cm 8 (A8)

When equations (A3), (A7), and (A8) are combined, the
estimated change in pressure coefficient at the surface of a
body due tQ centrifugal forces in high supersonic speed
flow is obtained in the form

()
ACP=~ 1—: COS8R,

or

(A f))



BODIES OF REVOLUTION HATTNG MINIMUM DRAG AT ~GH SUPERSONIC AIR8PDEDS 565

APPENDIX B

CALCULATION OF MINIMUM-DRAG BODIES, WITH CONSIDERATION OF CENTRIFUGAL FORCES IN THE DISTURBED
FLOW FIELD

GIVEN LENGTH AND BME DIAMETEE

For the purpose of this calculation, equations (1) and (A9)
for the pressure coefhient are combined with equation (4)
to yield the drag parameter in the form

~D=?/?+dvl)+
H ( +%sh2’1~’~%2 sin~@ 1

.0

(In)

The term V,s represents the drag on any finite region of
infinite slope at the nose, while the function P(YJ, given by’

represents a ‘leading-edge thrust” due tQ the acceleration
of the air flow about a corner (ii it exists) at (o,@.

The expression @l) may be put in the form

( “2whereupon recalling sin26=—
)

the integrand simplifies
1+’”

to a function j given by the relation

()
3y

1+3 –

f=ld z–~

With the aid of this expression and equations (15) and
(19) the parametric remaentation of the minimizing curve
&n” be o~tained in th~ following form:

‘=@+JzizTrl
where

Y1’= 1
and, in general,

‘1>0

@32)

The minimizing curve given by these relations, similar to
the curve obtained from the impact pressure treatment,
does not have a corner between the points (o, yJ and (~, yJ.
The minimumdrag shape defined by equation (B2) is com-

Olongtbebcdy-wfam dre’mum abmt theW+n3rat(o,gl).

pared in figure 8 with that determined earlier by considering
impact pressures only.

The equations defining the minh&ing curves for the other
given geometric conditions me obtained in a similar manner.

GIVEN LENGTH AND VOLUME

[, 1
‘E+c(l+y”)’ M’-A(l+&’)*

Y
2=

w–~(l+&)’
“2

x= J“@lU1Y’
(133)

.

with yl’ = 1 and yQ’=().274 and a value of X between — ~
and O as required for the given values of length and volume.
~ Numerical integration of equation (133) is accomplished
by fit evaluating the first integral of the Euler equation at
the base of the body and solving for cly~ in terms of y2A.

ht@ 4@’, YA) represent the resulting function of y’ and
y2A,equation (133) becomes

Y=Yw(Y’~ YA)

and the volume is given by

The values of the functions A and I’ are obtained by numerical
intqgation for various values of y~~ to enable interpolation
for that value of y~~ which makes l?/ii3=V/ul’. The set
(?@, A, r) so determined .Wis& the given volume md
length requirements and yields a value of the base ordinate,

{
=+ [x(l+y’’)3”-2/]y2+

‘w

J[x(l+y’’)3”-~3]’y22+ 12cy’’(l+y@y,y, 1

with a range of x given by

()–0.64<X<2 1A
2y2

OW

The procedure used to integrate equations
that employed to integrate equations (133)

(B4) is simihm to
above.
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where

GIVEN BASE DIAMETBR AND VOLUbfR

2y2

~=xy,(l+y’’)2_3

v“ 1
.(335)

For lld ratios greater than %, y,=O, yl’=O, and the range of
y2’ and x are

o <y; qs

o<A<3g——

GIVEN BABE DIAMETBB AND SURFACE AREA

i

Y=: Jl+ti~3B ~1
.=j;~=:p(’)!2’’

(B6)

with yl= O and

A= 121.6(@/s)3

The minimkkg curve given by equations (B6) is compnred
in figure 9 with that determined earlier (the cone) by con-
sidering impact p~essures only.
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